Reprinted from The American Mathematical Monthly 75.3(1968)296.

Sum of Digits of a Number

E 1926 [1966, 1016]. Proposed by L. D. Yarbrough, Harvard Computing Center

Express in terms of N and b the sum of the digits of the integer N as written in radix b notation. (This is a generalization of the rule of "casting out nines," and for $b=2$ the formula yields the number of 1 's in the binary representation of N, which is a measure of the multiplication speed of certain digital computers.)

Solution by Stanley Rabinowitz, Far Rockaway, N. Y. Suppose $N=\sum_{k=0}^{n} a_{k} b^{k}$. Then

$$
a_{j}=\left[\frac{N}{b^{j}}\right]-b\left[\frac{N}{b^{j+1}}\right],
$$

so

$$
\begin{aligned}
\sum_{j=0}^{n} a_{j} & =\sum_{j=0}^{\infty}\left(\left[\frac{N}{b^{j}}\right]-b\left[\frac{N}{b^{j+1}}\right]\right) \\
& =\sum_{j=0}^{\infty}\left[\frac{N}{b^{j}}\right]-b \sum_{j=1}^{\infty}\left[\frac{N}{b^{j}}\right]=N-(b-1) \sum_{j=1}^{\infty}\left[\frac{N}{b^{j}}\right] .
\end{aligned}
$$

